Search results
Results From The WOW.Com Content Network
While a simple measure, it is notable in that some texts and guides suggest or imply that the dispersion of nominal measurements cannot be ascertained. It is defined for instance by ( Freeman 1965 ). Just as with the range or standard deviation , the larger the variation ratio, the more differentiated or dispersed the data are; and the smaller ...
An index of qualitative variation (IQV) is a measure of statistical dispersion ... (or variation ratio) is ... 1 degrees of freedom at the 97.5% and 2.5% levels of ...
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal , ordinal , interval , and ratio .
A measure of statistical dispersion is a nonnegative real number that is zero if all the data are the same and increases as the data become more diverse. Most measures of dispersion have the same units as the quantity being measured. In other words, if the measurements are in metres or seconds, so is the measure of dispersion.
In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...
Some types of normalization involve only a rescaling, to arrive at values relative to some size variable. In terms of levels of measurement, such ratios only make sense for ratio measurements (where ratios of measurements are meaningful), not interval measurements (where only distances are meaningful, but not ratios).
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
For interval level variables, the arithmetic mean (average) and standard deviation are added to the toolbox and, for ratio level variables, we add the geometric mean and harmonic mean as measures of central tendency and the coefficient of variation as a measure of dispersion.