When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...

  3. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    See the figure for an example of the case Δ 0 > 0. The inflection point of a function is where that function changes concavity. [3] An inflection point occurs when the second derivative ″ = +, is zero, and the third derivative is nonzero. Thus a cubic function has always a single inflection point, which occurs at

  4. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    For example, rhamphoid cusps occur for inflection points (and for undulation points) for which the tangent is parallel to the direction of projection. In many cases, and typically in computer vision and computer graphics, the curve that is projected is the curve of the critical points of the restriction to a (smooth) spatial object of the ...

  5. Cubic plane curve - Wikipedia

    en.wikipedia.org/wiki/Cubic_plane_curve

    However, only three of these points may be real, so that the others cannot be seen in the real projective plane by drawing the curve. The nine inflection points of a non-singular cubic have the property that every line passing through two of them contains exactly three inflection points. The real points of cubic curves were studied by Isaac ...

  6. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...

  7. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    inflection point In differential calculus, an inflection point, point of inflection, flex, or inflection (British English: inflexion) is a point on a continuous plane curve at which the curve changes from being concave (concave downward) to convex (concave upward), or vice versa. instantaneous rate of change

  8. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is a bounded, differentiable, real function that is defined for all real input values and has a non-negative derivative at each point [1] [2] and exactly one inflection point. Properties

  9. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    A simple example of a point of inflection is the function f(x) = x 3. There is a clear change of concavity about the point x = 0, and we can prove this by means of calculus. The second derivative of f is the everywhere-continuous 6x, and at x = 0, f″ = 0, and the sign changes about this point. So x = 0 is a point of inflection.