Search results
Results From The WOW.Com Content Network
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
G is the modulus of rigidity (shear modulus) of the material J is the torsional constant. Inverting the previous relation, we can define two quantities; the torsional rigidity, = with SI units N⋅m 2 /rad. And the torsional stiffness,
Saint-Venant [2] conjectured in 1856 that of all domains D of equal area A the circular one has the greatest torsional rigidity, that is . A rigorous proof of this inequality was not given until 1948 by Pólya. [3]
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
Similarly, the torsional stiffness of a straight section is = where is the rigidity modulus of the material, is the torsion constant for the section. Note that the torsional stiffness has dimensions [force] * [length] / [angle], so that its SI units are N*m/rad.
The torsional analog of Hooke's law applies to torsional springs. It states that the torque (τ) required to rotate an object is directly proportional to the angular displacement (θ) from the equilibrium position. It describes the relationship between the torque applied to an object and the resulting angular deformation due to torsion ...
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
Depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. The image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel.