When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  3. Reachability - Wikipedia

    en.wikipedia.org/wiki/Reachability

    Another problem related to reachability queries is in quickly recalculating changes to reachability relationships when some portion of the graph is changed. For example, this is a relevant concern to garbage collection which needs to balance the reclamation of memory (so that it may be reallocated) with the performance concerns of the running ...

  4. List of graph theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_graph_theory_topics

    Adjacency list; Adjacency matrix. Adjacency algebra – the algebra of polynomials in the adjacency matrix; Canadian traveller problem; Cliques and independent sets. Clique problem; Connected component; Cycle space; de Bruijn sequences; Degree diameter problem; Entanglement (graph measure) ErdÅ‘s–Gyárfás conjecture; Eternal dominating set ...

  5. Neighbourhood (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(graph_theory)

    In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge.The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v.

  6. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    For sparse graphs, that is, graphs with far fewer than | | edges, Dijkstra's algorithm can be implemented more efficiently by storing the graph in the form of adjacency lists and using a self-balancing binary search tree, binary heap, pairing heap, Fibonacci heap or a priority heap as a priority queue to implement extracting minimum efficiently.

  7. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    The Laplacian matrix is the easiest to define for a simple graph but more common in applications for an edge-weighted graph, i.e., with weights on its edges — the entries of the graph adjacency matrix. Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues and eigenvectors of matrices associated with the graph ...

  8. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    In some variations of this problem, the output should list all cliques of size k. [18] In the clique decision problem, the input is an undirected graph and a number k, and the output is a Boolean value: true if the graph contains a k-clique, and false otherwise. [19] The first four of these problems are all important in practical applications.

  9. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.