When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  3. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  4. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...

  5. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...

  6. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    The partial derivative generalizes the notion of the derivative to higher dimensions. A partial derivative of a multivariable function is a derivative with respect to one variable with all other variables held constant. [1]: 26ff A partial derivative may be thought of as the directional derivative of the function along a coordinate axis.

  7. Lie bracket of vector fields - Wikipedia

    en.wikipedia.org/wiki/Lie_bracket_of_vector_fields

    Each smooth vector field : on a manifold may be regarded as a differential operator acting on smooth functions (where and of class ()) when we define () to be another function whose value at a point is the directional derivative of at in the direction ().

  8. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The divergence of a higher-order tensor field may be found by decomposing the tensor field into a sum of outer products and using the identity, = + where is the directional derivative in the direction of multiplied by its magnitude.

  9. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations. [1] The directional derivative provides a systematic way of finding these derivatives. [2]