Ads
related to: obstacle avoidance ir sensor for cars
Search results
Results From The WOW.Com Content Network
Obstacle avoidance, in robotics, is a critical aspect of autonomous navigation and control systems. It is the capability of a robot or an autonomous system/machine to detect and circumvent obstacles in its path to reach a predefined destination. This technology plays a pivotal role in various fields, including industrial automation, self ...
The first step in collision avoidance is perception, which can use sensors like LiDAR, visual cameras, thermal or IR cameras, or solid-state devices. They are divided upon the part of the electromagnetic spectrum they use. There are two types of sensors, passive and active sensors. Examples of active sensors are LiDAR, Radar and Sonar. Examples ...
Collision avoidance by braking is appropriate at low vehicle speeds (e.g. below 50 km/h (31 mph)), while collision avoidance by steering may be more appropriate at higher vehicle speeds if lanes are clear. [10] Cars with collision avoidance may also be equipped with adaptive cruise control, using the same forward-looking sensors.
Currently, these systems use infrared sensors and cameras to monitor the driver's attentiveness through eye-tracking. [18] If the vehicle detects a possible obstacle, it will notify the driver and if no action is taken, the vehicle may react to the obstacle.
Collision avoidance by braking is appropriate at low vehicle speeds (e.g. below 50 km/h (31 mph)), while collision avoidance by steering may be more appropriate at higher vehicle speeds if lanes are clear. [3] Cars with collision avoidance may also be equipped with adaptive cruise control, using the same forward-looking sensors.
The electromagnetic parking sensor (EPS) was re-invented and patented in 1992 by Mauro Del Signore. [2] Electromagnetic sensors rely on the vehicle moving slowly and smoothly towards the object to be avoided. Once an obstacle is detected, the sensor continues to signal the presence of the obstacle even if the vehicle momentarily stops.
Adaptive cruise control does not provide full autonomy: the system only provides some help to the driver, but does not drive the car by itself. [3] For example, the driver is able to set the cruise control to 55mph, if the car while traveling that speed catches up to another vehicle going only 45mph, the ACC will cause the car to automatically brake and maintain a safe distance behind the ...
Electronic stability control (also known as roll over protection) is a specific technology that helps keep the vehicle balanced. During harsh weather or tough road conditions that would cause vehicle steering to be extreme, this technology allows the drivers to regain control and prevent possible crashes, roll overs, and fishtails.