Search results
Results From The WOW.Com Content Network
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The stub is made capacitive or inductive according to whether the main line presents an inductive or capacitive impedance, respectively. This is not the same as the actual impedance of the load since the reactive part of the load impedance will be subject to impedance transformer action and the resistive part.
The table below lists formulas for the self-inductance of various simple shapes made of thin cylindrical conductors (wires). In general these are only accurate if the wire radius a {\displaystyle a} is much smaller than the dimensions of the shape, and if no ferromagnetic materials are nearby (no magnetic core ).
The total reactance at the angular frequency therefore is given by the geometric (complex) addition of a capacitive reactance (Capacitance) = and an inductive reactance : =. To calculate the impedance Z {\displaystyle \scriptstyle Z} the resistance has to be added geometrically and then Z {\displaystyle Z} is given by
Inductive reactance = increases as frequency increases, while capacitive reactance = decreases with increase in frequency (defined here as a positive number). At one particular frequency, these two reactances are equal and the voltages across them are equal and opposite in sign; that frequency is called the resonant frequency f 0 for the given ...
Heaviside's version (see Maxwell–Faraday equation below) is the form recognized today in the group of equations known as Maxwell's equations. Lenz's law , formulated by Emil Lenz in 1834, [ 13 ] describes "flux through the circuit", and gives the direction of the induced emf and current resulting from electromagnetic induction (elaborated ...
Summation of the inductive and capacitive coupling coefficients is performed by formula [3] = + +. (8) This formula is derived from the definition (6) and formulas (4) and (7). Note that the sign of the coupling coefficient itself is of no importance. Frequency response of the filter will not change if signs of all the coupling coefficients ...