Search results
Results From The WOW.Com Content Network
Symmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern.
Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
In biology, the notion of symmetry is also used as in physics, that is to say to describe the properties of the objects studied, including their interactions. A remarkable property of biological evolution is the changes of symmetry corresponding to the appearance of new parts and dynamics.
In developmental biology, left-right asymmetry (LR asymmetry) is the process in early embryonic development that breaks the normal symmetry in the bilateral embryo.In vertebrates, left-right asymmetry is established early in development at a structure called the left-right organizer (the name of which varies between species) and leads to activation of different signalling pathways on the left ...
Bilateria (/ ˌ b aɪ l ə ˈ t ɪər i ə /) [5] is a large clade or infrakingdom of animals called bilaterians (/ ˌ b aɪ l ə ˈ t ɪər i ə n /), [6] characterised by bilateral symmetry (i.e. having a left and a right side that are mirror images of each other) during embryonic development.
The definition of symbiosis was a matter of debate for 130 years. [7] In 1877, Albert Bernhard Frank used the term symbiosis to describe the mutualistic relationship in lichens . [ 8 ] [ 9 ] In 1878, the German mycologist Heinrich Anton de Bary defined it as "the living together of unlike organisms".
Fluctuating asymmetry (FA) is often considered to be the product of developmental stress and instability, caused by both genetic and environmental stressors. The notion that FA is a result of genetic and environmental factors is supported by Waddington's notion of canalisation, which implies that FA is a measure of the genome's ability to successfully buffer development to achieve a normal ...
Among plants, size asymmetry is context-dependent and competition can be both asymmetric and symmetric depending on the most limiting resource. In forest stands, below-ground competition for nutrients and water is size-symmetric, because a tree's root system is typically proportionate to the biomass of the entire tree. [22]