Search results
Results From The WOW.Com Content Network
Tin-121m (121m Sn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years. In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield ...
Another notable example is the only naturally occurring isotope of bismuth, bismuth-209, which has been predicted to be unstable with a very long half-life, but has been observed to decay. Because of their long half-lives, such isotopes are still found on Earth in various quantities, and together with the stable isotopes they are called ...
The other six isotopes forming 82.7% of natural tin have capture cross sections of 0.3 barns or less, making them effectively transparent to neutrons. [30] Tin has 31 unstable isotopes, ranging in mass number from 99 to 139. The unstable tin isotopes have half-lives of less than a year except for tin-126, which has a half-life of
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
In a normal thermal reactor, tin-121m has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce 121m Sn at higher yields. For example, its yield from U-235 is 0.0007% per thermal fission and 0.002% per fast fission. [10]
For example, the nuclides tin-100 and tin-132 are examples of doubly magic isotopes of tin that are unstable, and represent endpoints beyond which stability drops off rapidly. Nickel-48, discovered in 1999, is the most proton-rich doubly magic nuclide known. [ 16 ]
The 80 elements with one or more stable isotopes comprise a total of 251 nuclides that have not been shown to decay using current equipment. Of these 80 elements, 26 have only one stable isotope and are called monoisotopic. The other 56 have more than one stable isotope. Tin has ten stable isotopes, the largest number of any element.
The stable argon isotope 40 Ar is actually more common as a radiogenic nuclide than as a primordial nuclide, forming almost 1% of the Earth's atmosphere, which is regenerated by the beta decay of the extremely long-lived radioactive primordial isotope 40 K, whose half-life is on the order of a billion years and thus has been generating argon ...