Search results
Results From The WOW.Com Content Network
The constant of integration also implicitly or explicitly appears in the language of differential equations. Almost all differential equations will have many solutions, and each constant represents the unique solution of a well-posed initial value problem. An additional justification comes from abstract algebra.
Suppose a and b are constant, and that f(x) involves a parameter α which is constant in the integration but may vary to form different integrals. Assume that f ( x , α ) is a continuous function of x and α in the compact set {( x , α ) : α 0 ≤ α ≤ α 1 and a ≤ x ≤ b }, and that the partial derivative f α ( x , α ) exists and is ...
From the conjecture and the proof of the fundamental theorem of calculus, calculus as a unified theory of integration and differentiation is started. The first published statement and proof of a rudimentary form of the fundamental theorem, strongly geometric in character, [ 2 ] was by James Gregory (1638–1675).
The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...
The derivative of a constant function is zero, as noted above, and the differential operator is a linear operator, so functions that only differ by a constant term have the same derivative. To acknowledge this, a constant of integration is added to an indefinite integral; this ensures that all possible solutions are included. The constant of ...
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B: