Search results
Results From The WOW.Com Content Network
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
Roughly speaking, each vertex represents a 3-jm symbol, the graph is converted to a digraph by assigning signs to the angular momentum quantum numbers j, the vertices are labelled with a handedness representing the order of the three j (of the three edges) in the 3-jm symbol, and the graph represents a sum over the product of all these numbers ...
In graph theory, the Möbius ladder M n, for even numbers n, is formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is a cubic, circulant graph, so-named because (with the exception of M 6 (the utility graph K 3,3), M n has exactly n/2 four-cycles [1] which link together by their shared edges to form a topological Möbius strip.
In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...
There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries–Wong graph. [5] Moreover, the Harries–Wong graph and Harries graph are cospectral graphs. The Balaban 10-cage has chromatic number 2, chromatic index 3, diameter 6, girth 10 and is hamiltonian. It is also a 3-vertex-connected graph and 3-edge-connected.
In the mathematical field of graph theory, the Gray graph is an undirected bipartite graph with 54 vertices and 81 edges. It is a cubic graph : every vertex touches exactly three edges. It was discovered by Marion C. Gray in 1932 (unpublished), then discovered independently by Bouwer 1968 in reply to a question posed by Jon Folkman 1967.
The bidiakis cube is a cubic Hamiltonian graph and can be defined by the LCF notation [-6,4,-4] 4. The bidiakis cube can also be constructed from a cube by adding edges across the top and bottom faces which connect the centres of opposite sides of the faces. The two additional edges need to be perpendicular to each other.
In the mathematical field of graph theory, the Barnette–Bosák–Lederberg graph is a cubic (that is, 3-regular) polyhedral graph with no Hamiltonian cycle, the smallest such graph possible. [1] It was discovered in the mid-1960s by Joshua Lederberg, David Barnette, and Juraj Bosák, after whom it is named. It has 38 vertices and 57 edges. [2 ...