When.com Web Search

  1. Ads

    related to: coolant temp sensor ohm range calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Resistance thermometer - Wikipedia

    en.wikipedia.org/wiki/Resistance_thermometer

    Larger-diameter platinum wire is used, which drives up the cost and results in a lower resistance for the probe (typically 25.5 Ω). UPRTs have a wide temperature range (−200 °C to 1000 °C) and are approximately accurate to ±0.001 °C over the temperature range. UPRTs are only appropriate for laboratory use.

  3. Steinhart–Hart equation - Wikipedia

    en.wikipedia.org/wiki/Steinhart–Hart_equation

    is the temperature (in kelvins), R {\displaystyle R} is the resistance at T {\displaystyle T} (in ohms), A {\displaystyle A} , B {\displaystyle B} , and C {\displaystyle C} are the Steinhart–Hart coefficients , which are characteristics specific to the bulk semiconductor material over a given temperature range of interest.

  4. Thermistor - Wikipedia

    en.wikipedia.org/wiki/Thermistor

    The typical operating temperature range of a thermistor is −55 °C to +150 °C, though some glass-body thermistors have a maximal operating temperature of +300 °C. Thermistors differ from resistance temperature detectors (RTDs) in that the material used in a thermistor is generally a ceramic or polymer, while RTDs use pure metals.

  5. List of temperature sensors - Wikipedia

    en.wikipedia.org/wiki/List_of_temperature_sensors

    The integrated circuit sensor may come in a variety of interfaces — analogue or digital; for digital, these could be Serial Peripheral Interface, SMBus/I 2 C or 1-Wire.. In OpenBSD, many of the I 2 C temperature sensors from the below list have been supported and are accessible through the generalised hardware sensors framework [3] since OpenBSD 3.9 (2006), [4] [5]: §6.1 which has also ...

  6. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    Maximum temperature drop from junction to ambient = (+). We use the general principle that the temperature drop Δ T {\displaystyle \Delta T} across a given absolute thermal resistance R θ {\displaystyle R_{\theta }} with a given heat flow Q ˙ {\displaystyle {\dot {Q}}} through it is:

  7. Thermocouple - Wikipedia

    en.wikipedia.org/wiki/Thermocouple

    The thermocouple temperature is limited also by other materials used. For example beryllium oxide, a popular material for high temperature applications, tends to gain conductivity with temperature; a particular configuration of sensor had the insulation resistance dropping from a megaohm at 1000 K to 200 ohms at 2200 K. At high temperatures ...