When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Corollary - Wikipedia

    en.wikipedia.org/wiki/Corollary

    More formally, proposition B is a corollary of proposition A, if B can be readily deduced from A or is self-evident from its proof. In many cases, a corollary corresponds to a special case of a larger theorem, [4] which makes the theorem easier to use and apply, [5] even though its importance is generally considered to be secondary to that of ...

  3. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    It posits that a proposition and its negation cannot both be true, or equivalently, that a proposition cannot be both true and false. Formally the law of non-contradiction is written as ¬(P ∧ ¬P) and read as "it is not the case that a proposition is both true and false". The law of non-contradiction neither follows nor is implied by the ...

  4. Porism - Wikipedia

    en.wikipedia.org/wiki/Porism

    A porism is a mathematical proposition or corollary. It has been used to refer to a direct consequence of a proof, analogous to how a corollary refers to a direct consequence of a theorem. In modern usage, it is a relationship that holds for an infinite range of values but only if a certain condition is assumed, such as Steiner's porism. [1]

  5. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms , do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic .

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint.

  7. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.

  8. Elliptic geometry - Wikipedia

    en.wikipedia.org/wiki/Elliptic_geometry

    Therefore any result in Euclidean geometry that follows from these three postulates will hold in elliptic geometry, such as proposition 1 from book I of the Elements, which states that given any line segment, an equilateral triangle can be constructed with the segment as its base.

  9. Propositional formula - Wikipedia

    en.wikipedia.org/wiki/Propositional_formula

    The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).

  1. Related searches corollary vs proposition in geometry quizlet test 1 study guide questions and answers

    corollary vs propositioncorollary in maths
    corollary proof mathcorollary of a theorem