When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The sieve of Eratosthenes can be expressed in pseudocode, as follows: [8] [9] algorithm Sieve of Eratosthenes is input: an integer n > 1. output: all prime numbers from 2 through n. let A be an array of Boolean values, indexed by integers 2 to n, initially all set to true.

  3. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The sieve methods discussed in this article are not closely related to the integer factorization sieve methods such as the quadratic sieve and the general number field sieve. Those factorization methods use the idea of the sieve of Eratosthenes to determine efficiently which members of a list of numbers can be completely factored into small primes.

  4. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  5. Wikipedia : Featured picture candidates/Sieve of Eratosthenes

    en.wikipedia.org/.../Sieve_of_Eratosthenes

    Just use three colours, one for the number used is the current step of the sieve, one for non-primes and then one for primes. And highlight clearly you start fron n 2 when using n in the sieve by making the number flash or something. C e n t y 22:02, 28 September 2007 (UTC) Oppose per centy.

  6. Sieve method - Wikipedia

    en.wikipedia.org/wiki/Sieve_method

    Sieve method, or the method of sieves, can mean: in mathematics and computer science, the sieve of Eratosthenes, a simple method for finding prime numbers in number theory, any of a variety of methods studied in sieve theory; in combinatorics, the set of methods dealt with in sieve theory or more specifically, the inclusion–exclusion principle

  7. Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Eratosthenes

    Eratosthenes created a whole section devoted to the examination of Homer, and acquired original works of great tragic dramas of Aeschylus, Sophocles and Euripides. [6] Eratosthenes made several important contributions to mathematics and science, and was a friend of Archimedes. Around 255 BC, he invented the armillary sphere.

  8. Legendre sieve - Wikipedia

    en.wikipedia.org/wiki/Legendre_sieve

    In this example the fact that the Legendre identity is derived from the Sieve of Eratosthenes is clear: the first term is the number of integers below X, the second term removes the multiples of all primes, the third term adds back the multiples of two primes (which were miscounted by being "crossed out twice") but also adds back the multiples ...

  9. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In order to achieve this speed-up, the number field sieve has to perform computations and factorizations in number fields. This results in many rather complicated aspects of the algorithm, as compared to the simpler rational sieve. The size of the input to the algorithm is log 2 n or the number of bits in the binary representation of n.