Search results
Results From The WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
The analysis of errors computed using the global positioning system is important for understanding how GPS works, and for knowing what magnitude errors should be expected. The Global Positioning System makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected.
When using approximation equations or algorithms, especially when using finitely many digits to represent real numbers (which in theory have infinitely many digits), one of the goals of numerical analysis is to estimate computation errors. [5] Computation errors, also called numerical errors, include both truncation errors and roundoff errors.
For example, the finite element method or finite difference method may be used to approximate the solution of a partial differential equation (which introduces numerical errors). Other examples are numerical integration and infinite sum truncation that are necessary approximations in numerical implementation. Experimental
In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .
The delta method was derived from propagation of error, and the idea behind was known in the early 20th century. [1] Its statistical application can be traced as far back as 1928 by T. L. Kelley. [2] A formal description of the method was presented by J. L. Doob in 1935. [3] Robert Dorfman also described a version of it in 1938. [4]
If r is fractional with an even divisor, ensure that x is not negative. "n" is the sample size. These expressions are based on "Method 1" data analysis, where the observed values of x are averaged before the transformation (i.e., in this case, raising to a power and multiplying by a constant) is applied.
For linear multistep methods, an additional concept called zero-stability is needed to explain the relation between local and global truncation errors. Linear multistep methods that satisfy the condition of zero-stability have the same relation between local and global errors as one-step methods.