When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Critical point (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point...

    In the vicinity of the critical point, the physical properties of the liquid and the vapor change dramatically, with both phases becoming even more similar. For instance, liquid water under normal conditions is nearly incompressible, has a low thermal expansion coefficient, has a high dielectric constant, and is an excellent solvent for ...

  3. Thermal expansion - Wikipedia

    en.wikipedia.org/wiki/Thermal_expansion

    A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...

  4. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    The internal energy is the sum of thermal kinetic energy and thermal potential energy. [12] Thus, even if the internal energy does not change, the temperature can change due to conversion between kinetic and potential energy; this is what happens in a free expansion and typically produces a decrease in temperature as the fluid expands.

  5. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:

  8. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    Instead of letting the gas undergo a free expansion in which the volume is doubled, a free expansion is allowed in which the volume expands by a very small amount δV. After thermal equilibrium is reached, we then let the gas undergo another free expansion by δV and wait until thermal equilibrium is reached. We repeat this until the volume has ...

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    By the principle of minimum energy, there are a number of other state functions which may be defined which have the dimensions of energy and which are minimized according to the second law under certain conditions other than constant entropy. These are called thermodynamic potentials. For each such potential, the relevant fundamental equation ...