Search results
Results From The WOW.Com Content Network
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
Plot of the hypergeometric function 2F1(a,b; c; z) with a=2 and b=3 and c=4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, the Gaussian or ordinary hypergeometric function 2 F 1 (a,b;c;z) is a special function represented by the hypergeometric series, that includes many ...
The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function 1 / Γ(z) is an entire function.
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
Plot of the Jacobi polynomial function (,) with = and = and = in the complex plane from to + with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , Jacobi polynomials (occasionally called hypergeometric polynomials ) P n ( α , β ) ( x ) {\displaystyle P_{n}^{(\alpha ,\beta )}(x)} are a class of classical orthogonal ...
the gamma function, a generalization of the factorial [14] the upper incomplete gamma function; the modular group, the group of fractional linear transformations; the gamma distribution, a continuous probability distribution defined using the gamma function [15] second-order sensitivity to price in mathematical finance
Interpolated approximations and bounds are all of the form ~ () + (~ ()) where ~ is an interpolating function running monotonially from 0 at low α to 1 at high α, approximating an ideal, or exact, interpolator (): = () () For the simplest interpolating function considered, a first-order rational function ~ = + the tightest lower bound has ...
Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...