When.com Web Search

  1. Ad

    related to: calculating torque in the figure best

Search results

  1. Results From The WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    t. e. In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.

  3. Line of action - Wikipedia

    en.wikipedia.org/wiki/Line_of_action

    In physics, the line of action (also called line of application) of a force (F→) is a geometric representation of how the force is applied. It is the straight line through the point at which the force is applied, and is in the same direction as the vector F→. [1][2] The concept is essential, for instance, for understanding the net effect of ...

  4. Motor constants - Wikipedia

    en.wikipedia.org/wiki/Motor_constants

    Motor velocity constant, back EMF constant. is the motor velocity, or motor speed, [2] constant (not to be confused with kV, the symbol for kilovolt), measured in revolutions per minute (RPM) per volt or radians per volt second, rad/V·s: [3] The rating of a brushless motor is the ratio of the motor's unloaded rotational speed (measured in RPM ...

  5. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque.Torsion is expressed in either the pascal (Pa), an SI unit for newtons per square metre, or in pounds per square inch (psi) while torque is expressed in newton metres (N·m) or foot-pound force (ft·lbf).

  6. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  7. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relative to a rotational axis. It is the ratio between the torque applied and the resulting angular acceleration about that axis.

  8. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  9. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    The force is the net force, but to calculate the additional torque, the net force must be assigned the line of action. The line of action can be selected arbitrarily, but the additional pure torque depends on this choice. In a special case, it is possible to find such line of action that this additional torque is zero.