When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =. We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of size n.

  4. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics , the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations , namely those whose matrix is positive-semidefinite .

  5. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    QR decomposition. In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular ...

  6. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, [1] or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. [2] A publication was not delivered before 1874 by ...

  7. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  8. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. [1][2][3] This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. [4] Rank is thus a measure of the "nondegenerateness ...

  9. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Appearance. In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix. rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system.