When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limiting reagent - Wikipedia

    en.wikipedia.org/wiki/Limiting_reagent

    One reactant (A) is chosen, and the balanced chemical equation is used to determine the amount of the other reactant (B) necessary to react with A. If the amount of B actually present exceeds the amount required, then B is in excess and A is the limiting reagent. If the amount of B present is less than required, then B is the limiting reagent.

  3. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    To find the limiting reagent and the mass of HCl produced by the reaction, we change the above amounts by a factor of 90/324.41 and obtain the following amounts: 90.00 g FeCl 3, 28.37 g H 2 S, 57.67 g Fe 2 S 3, 60.69 g HCl. The limiting reactant (or reagent) is FeCl 3, since all 90.00 g of it is used up while only 28.37 g H 2 S are consumed.

  4. Yield (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Yield_(chemistry)

    Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction. The limiting reagent determines the theoretical yield—the relative quantity of moles of reactants and the product formed in a chemical reaction. Other reactants are said to be present in excess.

  5. Extent of reaction - Wikipedia

    en.wikipedia.org/wiki/Extent_of_reaction

    This formula leads to the Nernst equation when applied to the oxidation-reduction reaction which generates the voltage of a voltaic cell. Analogously, the relation between the change in reaction enthalpy and enthalpy can be defined. For example, [8] = (),

  6. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    The formula of the activated complex is Cl 2 + H 2 C 2 O 4 − 2 H + − Cl − + x H 2 O, or C 2 O 4 Cl(H 2 O) – x (an unknown number of water molecules are added because the possible dependence of the reaction rate on H 2 O was not studied, since the data were obtained in water solvent at a large and essentially unvarying concentration).

  7. Conversion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Conversion_(chemistry)

    Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...

  8. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  9. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...