Search results
Results From The WOW.Com Content Network
The inverse Gaussian distribution is a two-parameter exponential family with natural parameters −λ/(2μ 2) and −λ/2, and natural statistics X and 1/X.. For > fixed, it is also a single-parameter natural exponential family distribution [4] where the base distribution has density
The inverse Gaussian distribution is a NEF with a cubic variance function. The parameterization of most of the above distributions has been written differently from the parameterization commonly used in textbooks and the above linked pages.
The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaussian distribution for p = −1/2 and b = 0, respectively. [7] Specifically, an inverse Gaussian distribution of the form
Perhaps the chief use of the inverse gamma distribution is in Bayesian statistics, where the distribution arises as the marginal posterior distribution for the unknown variance of a normal distribution, if an uninformative prior is used, and as an analytically tractable conjugate prior, if an informative prior is required. [1]
The circularly symmetric version of the complex normal distribution has a slightly different form. Each iso-density locus — the locus of points in k -dimensional space each of which gives the same particular value of the density — is an ellipse or its higher-dimensional generalization; hence the multivariate normal is a special case of the ...
The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used.
Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters. In the algebra of random variables , inverse distributions are special cases of the class of ratio distributions , in which the numerator random variable has a degenerate distribution .
Many very common probability distributions belong to the class of EDMs, among them are: normal distribution, binomial distribution, Poisson distribution, negative binomial distribution, gamma distribution, inverse Gaussian distribution, and Tweedie distribution.