Search results
Results From The WOW.Com Content Network
A quadratic form with integer coefficients is called an integral binary quadratic form, often abbreviated to binary quadratic form. This article is entirely devoted to integral binary quadratic forms. This choice is motivated by their status as the driving force behind the development of algebraic number theory.
Arranging all these reduced forms in a cycle, Shanks noticed that one can quickly jump to reduced forms further away from the beginning of the circle by composing two such forms and reducing the result. He called this binary operation on the set of reduced forms a giant step, and the operation to go to the next reduced form in the cycle a baby ...
is a binary quadratic form with an invariant given by the discriminant =. The symbolic representation of the discriminant is = where a and b are the symbols. The meaning of the expression (ab) 2 is as follows.
If none of the terms are 0, then the form is called nondegenerate; this includes positive definite, negative definite, and isotropic quadratic form (a mix of 1 and −1); equivalently, a nondegenerate quadratic form is one whose associated symmetric form is a nondegenerate bilinear form.
The process of row reduction makes use of elementary row operations, and can be divided into two parts.The first part (sometimes called forward elimination) reduces a given system to row echelon form, from which one can tell whether there are no solutions, a unique solution, or infinitely many solutions.
In mathematics, in number theory, Gauss composition law is a rule, invented by Carl Friedrich Gauss, for performing a binary operation on integral binary quadratic forms (IBQFs). Gauss presented this rule in his Disquisitiones Arithmeticae , [ 1 ] a textbook on number theory published in 1801, in Articles 234 - 244.
Optimal reduction reduces all computations with the same label in one step, avoiding duplicated work, but the number of parallel β-reduction steps to reduce a given term to normal form is approximately linear in the size of the term. This is far too small to be a reasonable cost measure, as any Turing machine may be encoded in the lambda ...
This statement, due to Tunnell's theorem (Tunnell 1983), is related to the fact that n is a congruent number if and only if the elliptic curve y 2 = x 3 − n 2 x has a rational point of infinite order (thus, under the Birch and Swinnerton-Dyer conjecture, its L-function has a zero at 1). The interest in this statement is that the condition is ...