Search results
Results From The WOW.Com Content Network
For transistors, the current-gain–bandwidth product is known as the f T or transition frequency. [4] [5] It is calculated from the low-frequency (a few kilohertz) current gain under specified test conditions, and the cutoff frequency at which the current gain drops by 3 decibels (70% amplitude); the product of these two values can be thought of as the frequency at which the current gain ...
A gain greater than one (greater than zero dB), that is, amplification, is the defining property of an active device or circuit, while a passive circuit will have a gain of less than one. [4] The term gain alone is ambiguous, and can refer to the ratio of output to input voltage (voltage gain), current (current gain) or electric power (power ...
In electronics the amplification factor, or gain, is the ratio of the output to the input of an amplifier, sometimes represented by the symbol A F. In numerical analysis the amplification factor is a number derived using Von Neumann stability analysis to determine stability of a numerical scheme for a partial differential equation.
where f C is the cutoff or corner frequency of the amplifier: in this example f C = 10 4 Hz, and the gain at zero frequency A 0 = 10 5 V/V. The figure shows that the gain is flat out to the corner frequency and then drops. When feedback is present, the so-called closed-loop gain, as shown in the formula of the previous section, becomes
Figure 4 shows an example using this equation. At low values of gain this example amplifier satisfies the pole-ratio condition without compensation (that is, in Figure 4 the compensation capacitor C C is small at low gain), but as gain increases, a compensation capacitance rapidly becomes necessary (that is, in Figure 4 the compensation ...
In electronics, the common mode rejection ratio (CMRR) of a differential amplifier (or other device) is a metric used to quantify the ability of the device to reject common-mode signals, i.e. those that appear simultaneously and in-phase on both inputs. An ideal differential amplifier would have infinite CMRR, however this is not achievable in ...
In most amplifiers a reduction in gain takes place before hard clipping occurs; the result is a compression effect, which (if the amplifier is an audio amplifier) sounds much less unpleasant to the ear. For these amplifiers, the 1 dB compression point is defined as the input power (or output power) where the gain is 1 dB less than the small ...
A current buffer stage may be added at the output to lower the gain between the input and output terminals of the amplifier (though not necessarily the overall gain). For example, a common base may be used as a current buffer at the output of a common emitter stage, forming a cascode. This will typically reduce the Miller effect and increase ...