Search results
Results From The WOW.Com Content Network
The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals. They are made available for searching, depositing and accessing through interfaces like Open API. The datasets are ...
It is best to use a download manager such as GetRight so you can resume downloading the file even if your computer crashes or is shut down during the download. Download XAMPPLITE from (you must get the 1.5.0 version for it to work). Make sure to pick the file whose filename ends with .exe
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
Corpus Resource Database (CoRD), more than 80 English language corpora. [2] Coruña Corpus, a corpus of late Modern English scientific writing covering the period 1700–1900, developed by the Muste research group at the University of A Coruña; DBLP Discovery Dataset (D3), a corpus of computer science publications with sentient metadata. [3]
Overhead Imagery Research Data Set: Annotated overhead imagery. Images with multiple objects. Over 30 annotations and over 60 statistics that describe the target within the context of the image. 1000 Images, text Classification 2009 [166] [167] F. Tanner et al. SpaceNet SpaceNet is a corpus of commercial satellite imagery and labeled training data.
Researchers in other countries have made use of techniques such as shuffling sentences or referencing the Common Crawl dataset to work around copyright law in other legal jurisdictions. [ 7 ] English is the primary language for 46% of documents in the March 2023 version of the Common Crawl dataset.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5] GPT-2 was created as a "direct scale-up" of GPT-1 [6] with a ten-fold increase in both its parameter count and the size of its training dataset. [5]