Search results
Results From The WOW.Com Content Network
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
The stub is made capacitive or inductive according to whether the main line presents an inductive or capacitive impedance, respectively. This is not the same as the actual impedance of the load since the reactive part of the load impedance will be subject to impedance transformer action and the resistive part.
A mechanical analogy in the K = 1 case with magnetic field energy (1/2)Li 2 is a body with mass M, velocity u and kinetic energy (1/2)Mu 2. The rate of change of velocity (current) multiplied with mass (inductance) requires or generates a force (an electrical voltage). Circuit diagram of two mutually coupled inductors.
A series RLC network (in order): a resistor, an inductor, and a capacitor Tuned circuit of a shortwave radio transmitter.This circuit does not have a resistor like the above, but all tuned circuits have some resistance, causing them to function as an RLC circuit.
It uses the principle that the positive phase angle of an inductive impedance can be compensated by the negative phase angle of a capacitive impedance when put in the opposite arm and the circuit is at resonance; i.e., no potential difference across the detector (an AC voltmeter or ammeter)) and hence no current flowing through it. The unknown ...
In the electrical distribution field this typically occurs on a medium voltage electrical distribution network of transformers (inductive component) and power cables (capacitive component). If such a network has little or no resistive load connected and one phase of the applied voltage is then interrupted, ferroresonance can occur.
Within two months, Faraday had found several other manifestations of electromagnetic induction. For example, he saw transient currents when he quickly slid a bar magnet in and out of a coil of wires, and he generated a steady ( DC ) current by rotating a copper disk near the bar magnet with a sliding electrical lead (" Faraday's disk ").
It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.