When.com Web Search

  1. Ad

    related to: derivatives and graphs explained youtube videos tutorial

Search results

  1. Results From The WOW.Com Content Network
  2. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The graph of =, with a straight line that is tangent to (,). The slope of the tangent line is equal to . (The axes of the graph do not use a 1:1 scale.) The derivative of a function is then simply the slope of this tangent line.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  4. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    For this reason, the derivative is sometimes called the slope of the function f. [50]: 61–63 Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function. The derivative f′(x) of a curve at a point is the slope of the line tangent to that curve at that point. This slope is ...

  5. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily complex functions and their derivatives with no need for the symbolic representation of the derivative, only the function rule or an algorithm thereof is required.

  6. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    This can be motivated by the algebro-geometric point of view on the derivative of a function f from R to R at a point p. For this, note first that f − f(p) belongs to the ideal I p of functions on R which vanish at p. If the derivative f vanishes at p, then f − f(p) belongs to the square I p 2 of this ideal.

  7. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The last expression is the second derivative of position (x) with respect to time. On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the ...

  8. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the first derivative, for the second derivative, for the third derivative, and for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken.

  9. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}