Search results
Results From The WOW.Com Content Network
Coupling may be intentional or unintentional. Unintentional inductive coupling can cause signals from one circuit to be induced into a nearby circuit, this is called cross-talk, and is a form of electromagnetic interference. k is the coupling coefficient, Le1 and Le2 is the leakage inductance, M1 (M2) is the mutual inductance
Because the coupling coefficient is a function of both the mutual inductance and capacitance, it can also be expressed in terms of the vector fields and . Hong proposed that the coupling coefficient is the sum of the normalized overlap integrals [14] [15]
Mutual inductance occurs when the change in current in one inductor induces a voltage in another nearby inductor. It is important as the mechanism by which transformers work, but it can also cause unwanted coupling between conductors in a circuit. The mutual inductance, , is also a measure of the coupling between two inductors.
where M is the mutual inductance of the circuits and L p and L s are the inductances of the primary and secondary circuits, respectively. If the flux lines of the primary inductor thread every line of the secondary one, then the coefficient of coupling is 1 and M = L p L s {\textstyle M={\sqrt {L_{p}L_{s}}}} In practice, however, there is of ...
The four EMI coupling modes. When a source emits interference, it follows a route to the victim known as the coupling path. There are four basic coupling mechanisms: conductive, capacitive, magnetic or inductive, and radiative. Any coupling path can be broken down into one or more of these coupling mechanisms working together.
Each coil inductance can be notionally divided into two parts in the proportions k:(1−k). These are respectively an inductance producing the mutual flux and an inductance producing the leakage flux. Coupling coefficient is a function of the geometry of the system. It is fixed by the positional relationship between the two coils.
There is a critical value of transformer coupling coefficient at which the frequency response of the amplifier is maximally flat in the passband and the gain is maximum at the resonant frequency. Designs frequently use a coupling greater than this (over-coupling) in order to achieve an even wider bandwidth at the expense of a small loss of gain ...
It is critical that the model is as accurate as necessary to model the given noise event. For each signal event, decide how to excite the circuit so that the noise event will occur. Create a SPICE (or another circuit simulator) netlist that represents the desired excitation, to include as many effects (such as parasitic inductance and ...