When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nucleophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_aromatic...

    Aromatic nucleophilic substitution. This reaction differs from a common S N 2 reaction, because it happens at a trigonal carbon atom (sp 2 hybridization). The mechanism of S N 2 reaction does not occur due to steric hindrance of the benzene ring. In order to attack the C atom, the nucleophile must approach in line with the C-LG (leaving group ...

  3. Mitsunobu reaction - Wikipedia

    en.wikipedia.org/wiki/Mitsunobu_reaction

    The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.

  4. Dow process (phenol) - Wikipedia

    en.wikipedia.org/wiki/Dow_process_(phenol)

    When 1-[14 C]-1-chlorobenzene was subjected to aqueous NaOH at 395 °C, ipso substitution product 1-[14 C]-phenol was formed in 54% yield, while cine substitution product 2-[14 C]-phenol was formed in 43% yield, indicating that an elimination-addition (benzyne) mechanism is predominant, with perhaps a small amount of product from addition ...

  5. Azo coupling - Wikipedia

    en.wikipedia.org/wiki/Azo_coupling

    In organic chemistry, an azo coupling is an reaction between a diazonium compound (R−N≡N +) and another aromatic compound that produces an azo compound (R−N=N−R’).In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile, and the activated carbon (usually from an arene, which is called coupling agent), serves as a nucleophile.

  6. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    Nucleophilic substitutions can proceed by two different mechanisms, unimolecular nucleophilic substitution (S N 1) and bimolecular nucleophilic substitution (S N 2). The two reactions are named according tho their rate law, with S N 1 having a first-order rate law, and S N 2 having a second-order. [2] S N 1 reaction mechanism occurring through ...

  7. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    The unimolecular nucleophilic substitution (S N 1) reaction is a substitution reaction in organic chemistry. The Hughes-Ingold symbol of the mechanism expresses two properties—"S N " stands for " nucleophilic substitution ", and the "1" says that the rate-determining step is unimolecular .

  8. Buchner ring expansion - Wikipedia

    en.wikipedia.org/wiki/Buchner_ring_expansion

    The Buchner ring expansion reaction was first used in 1885 by Eduard Buchner and Theodor Curtius [1] [2] who prepared a carbene from ethyl diazoacetate for addition to benzene using both thermal and photochemical pathways in the synthesis of cycloheptatriene derivatives. The resulting product was a mixture of four isomeric carboxylic acids ...

  9. Alkyne trimerisation - Wikipedia

    en.wikipedia.org/wiki/Alkyne_trimerisation

    An alkyne trimerisation is a [2+2+2] cycloaddition reaction in which three alkyne units (C≡C) react to form a benzene ring. The reaction requires a metal catalyst. The process is of historic interest as well as being applicable to organic synthesis. [1] Being a cycloaddition reaction, it has high atom economy.