Ad
related to: shannon's entropy meaning in physics pdf book
Search results
Results From The WOW.Com Content Network
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
This equation gives the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure of entropy has sometimes been called the shannon in his honor. Entropy is also commonly computed using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in nats per ...
The physical entropy may be on a "per quantity" basis (h) which is called "intensive" entropy instead of the usual total entropy which is called "extensive" entropy. The "shannons" of a message ( Η ) are its total "extensive" information entropy and is h times the number of bits in the message.
The Shannon entropy (in nats) is: = = = and if entropy is measured in units of per nat, then the entropy is given by: = which is the Boltzmann entropy formula, where is the Boltzmann constant, which may be interpreted as the thermodynamic entropy per nat.
The shannon also serves as a unit of the information entropy of an event, which is defined as the expected value of the information content of the event (i.e., the probability-weighted average of the information content of all potential events). Given a number of possible outcomes, unlike information content, the entropy has an upper bound ...
In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the statistical limits to possible data compression for data whose source is an independent identically-distributed random variable, and the operational meaning of the Shannon entropy. Named after Claude Shannon, the source coding theorem shows that ...
A misleading [1] information diagram showing additive and subtractive relationships among Shannon's basic quantities of information for correlated variables and .The area contained by both circles is the joint entropy (,).
In physics, maximum entropy thermodynamics (colloquially, MaxEnt thermodynamics) views equilibrium thermodynamics and statistical mechanics as inference processes. More specifically, MaxEnt applies inference techniques rooted in Shannon information theory , Bayesian probability , and the principle of maximum entropy .