Search results
Results From The WOW.Com Content Network
As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values 3 and 1 nor between 4 and 4, that is, 3 < 1 and 4 < 4 both evaluate to false.
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
Relation of Ideas, in the Humean sense, is the type of knowledge that can be characterized as arising out of pure conceptual thought and logical operations (in contrast to a Matter of Fact). For instance, in mathematics: 8 x 10 = 80.
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
The difference between explanations and arguments reflects a difference in the kind of question that arises. In the case of arguments, we start from a doubted fact, which we try to support by arguments. In the case of explanations, we start with an accepted fact, the question being why is this fact or what caused it.
[4] [5] [6] [note 1] The domain of definition or active domain [2] of is the set of all such that for at least one . The codomain of definition , active codomain , [ 2 ] image or range of R {\displaystyle R} is the set of all y {\displaystyle y} such that x R y {\displaystyle xRy} for at least one x {\displaystyle x} .
Furthermore, if b 1, b 2 are both coprime with a, then so is their product b 1 b 2 (i.e., modulo a it is a product of invertible elements, and therefore invertible); [6] this also follows from the first point by Euclid's lemma, which states that if a prime number p divides a product bc, then p divides at least one of the factors b, c.
if p ≡ 3 (mod 8), then p is not a congruent number, but 2 p is a congruent number. if p ≡ 5 (mod 8), then p is a congruent number. if p ≡ 7 (mod 8), then p and 2 p are congruent numbers. It is also known that in each of the congruence classes 5, 6, 7 (mod 8), for any given k there are infinitely many square-free congruent numbers with k ...