When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    In physics and materials science, the Curie temperature (T C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism is lost at a critical temperature. [1]

  3. Diamagnetism - Wikipedia

    en.wikipedia.org/wiki/Diamagnetism

    A thin slice of pyrolytic graphite, which is an unusually strongly diamagnetic material, can be stably floated in a magnetic field, such as that from rare earth permanent magnets. This can be done with all components at room temperature, making a visually effective and relatively convenient demonstration of diamagnetism.

  4. Ferromagnetism - Wikipedia

    en.wikipedia.org/wiki/Ferromagnetism

    Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial ...

  5. Magnetic refrigeration - Wikipedia

    en.wikipedia.org/wiki/Magnetic_refrigeration

    The magnetocaloric effect can be quantified with the following equation: = ((,)) ((,)) where is the adiabatic change in temperature of the magnetic system around temperature T, H is the applied external magnetic field, C is the heat capacity of the working magnet (refrigerant) and M is the magnetization of the refrigerant.

  6. Ferrimagnetism - Wikipedia

    en.wikipedia.org/wiki/Ferrimagnetism

    Below the magnetization compensation point, ferrimagnetic material is magnetic. At the compensation point, the magnetic components cancel each other, and the total magnetic moment is zero. Above the Curie temperature, the material loses magnetism. Ferrimagnetism has the same physical origins as ferromagnetism and antiferromagnetism.

  7. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    For many paramagnetic materials, the magnetization of the material is directly proportional to an applied magnetic field, for sufficiently high temperatures and small fields. However, if the material is heated, this proportionality is reduced. For a fixed value of the field, the magnetic susceptibility is inversely proportional to temperature ...

  8. Superconducting magnet - Wikipedia

    en.wikipedia.org/wiki/Superconducting_magnet

    This material has critical temperature of 10 K and can superconduct at up to about 15 T. More expensive magnets can be made of niobium–tin (Nb 3 Sn). These have a T c of 18 K. When operating at 4.2 K they are able to withstand a much higher magnetic field intensity, up to 25 T to 30 T. Unfortunately, it is far more difficult to make the ...

  9. Thermomagnetic convection - Wikipedia

    en.wikipedia.org/wiki/Thermomagnetic_convection

    Ferrofluids can be used to transfer heat, since heat and mass transport in such magnetic fluids can be controlled using an external magnetic field.. B. A. Finlayson first explained in 1970 (in his paper "Convective instability of ferromagnetic fluids", Journal of Fluid Mechanics, 40:753-767) how an external magnetic field imposed on a ferrofluid with varying magnetic susceptibility, e.g., due ...