Search results
Results From The WOW.Com Content Network
The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.
A similar but different real-line system, the projectively extended real line, does not distinguish between + and (i.e. infinity is unsigned). [4] As a result, a function may have limit on the projectively extended real line, while in the extended real number system only the absolute value of the function has a limit, e.g. in the case of the ...
The standard part function can also be defined for infinite hyperreal numbers as follows: If x is a positive infinite hyperreal number, set st(x) to be the extended real number +, and likewise, if x is a negative infinite hyperreal number, set st(x) to be (the idea is that an infinite hyperreal number should be smaller than the "true" absolute ...
The projectively extended real line may be identified with a real projective line in which three points have been assigned the specific values 0, 1 and ∞. The projectively extended real number line is distinct from the affinely extended real number line, in which +∞ and −∞ are distinct.
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain . Real-valued functions of a real variable (commonly called real functions ) and real-valued functions of several real variables are the main object of study of calculus and ...
This theorem can be extended to characterize certain classes of [,]-valued maps (for example, real-valued sublinear functions) in terms of Minkowski functionals. For instance, it can be used to describe how every real homogeneous function f : X → R {\textstyle f:X\to \mathbb {R} } (such as linear functionals) can be written in terms of a ...
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
In convex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [,] = {}. [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the ...