Ads
related to: what is a radical of a ring size for men template sheet printableamazon.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
A radical class (also called radical property or just radical) is a class σ of rings possibly without multiplicative identities, such that: the homomorphic image of a ring in σ is also in σ every ring R contains an ideal S ( R ) in σ that contains every other ideal of R that is in σ
For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...
Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).
For a ring R with Jacobson radical J, the nonnegative powers are defined by using the product of ideals.. Jacobson's conjecture: In a right-and-left Noetherian ring, = {}. In other words: "The only element of a Noetherian ring in all powers of J is 0."
Any finitely generated algebra over a Jacobson ring is a Jacobson ring. In particular, any finitely generated algebra over a field or the integers, such as the coordinate ring of any affine algebraic set, is a Jacobson ring. A local ring has exactly one maximal ideal, so it is a Jacobson ring exactly when that maximal ideal is the only prime ideal.
The factor ring of a maximal ideal is a simple ring in general and is a field for commutative rings. [12] Minimal ideal: A nonzero ideal is called minimal if it contains no other nonzero ideal. Zero ideal: the ideal {}. [13] Unit ideal: the whole ring (being the ideal generated by ). [9]
The classical ring of quotients for any commutative Noetherian ring is a semilocal ring. The endomorphism ring of an Artinian module is a semilocal ring. Semi-local rings occur for example in algebraic geometry when a (commutative) ring R is localized with respect to the multiplicatively closed subset S = ∩ (R \ p i ) , where the p i are ...
A ring R is called a Jacobson ring if the nilradical and Jacobson radical of R/P coincide for all prime ideals P of R. An Artinian ring is Jacobson, and its nilradical is the maximal nilpotent ideal of the ring. In general, if the nilradical is finitely generated (e.g., the ring is Noetherian), then it is nilpotent.