When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    In data analysis, cosine similarity is a measure of similarity between two non-zero vectors defined in an inner product space. Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the ...

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Goldberg and Levy point out that the word2vec objective function causes words that occur in similar contexts to have similar embeddings (as measured by cosine similarity) and note that this is in line with J. R. Firth's distributional hypothesis. However, they note that this explanation is "very hand-wavy" and argue that a more formal ...

  4. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    Cosine similarity is a commonly used similarity measure for real-valued vectors, used in (among other fields) information retrieval to score the similarity of documents in the vector space model. In machine learning , common kernel functions such as the RBF kernel can be viewed as similarity functions.

  5. Vector space model - Wikipedia

    en.wikipedia.org/wiki/Vector_space_model

    As all vectors under consideration by this model are element-wise nonnegative, a cosine value of zero means that the query and document vector are orthogonal and have no match (i.e. the query term does not exist in the document being considered). See cosine similarity for further information. [2]

  6. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    By using the cosine-similarity of the sentence embeddings of candidate and reference sentences as the evaluation function, a grid-search algorithm can be utilized to automate hyperparameter optimization [citation needed].

  7. Latent semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Latent_semantic_analysis

    Documents and term vector representations can be clustered using traditional clustering algorithms like k-means using similarity measures like cosine. Given a query, view this as a mini document, and compare it to your documents in the low-dimensional space. To do the latter, you must first translate your query into the low-dimensional space.

  8. Similarity learning - Wikipedia

    en.wikipedia.org/wiki/Similarity_learning

    Similarity learning is an area of supervised machine learning in artificial intelligence. It is closely related to regression and classification , but the goal is to learn a similarity function that measures how similar or related two objects are.

  9. Similarity (network science) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(network_science)

    Salton proposed that we regard the i-th and j-th rows/columns of the adjacency matrix as two vectors and use the cosine of the angle between them as a similarity measure. The cosine similarity of i and j is the number of common neighbors divided by the geometric mean of their degrees. [4] Its value lies in the range from 0 to 1.