When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radiometric dating - Wikipedia

    en.wikipedia.org/wiki/Radiometric_dating

    In other radiometric dating methods, the heavy parent isotopes were produced by nucleosynthesis in supernovas, meaning that any parent isotope with a short half-life should be extinct by now. Carbon-14, though, is continuously created through collisions of neutrons generated by cosmic rays with nitrogen in the upper atmosphere and thus remains ...

  3. Hafnium–tungsten dating - Wikipedia

    en.wikipedia.org/wiki/Hafnium–tungsten_dating

    The radioactive system behind hafnium–tungsten dating is a two-stage decay as follows: 182 72 Hf → 182 73 Ta e − ν e 182 73 Ta → 182 74 W e − ν e. The first decay has a half-life of 8.9 million years, while the second has a half-life of only 114 days, [7] such that the intermediate nuclide tantalum-182 (182 Ta) can effectively be ignored.

  4. Geochronology - Wikipedia

    en.wikipedia.org/wiki/Geochronology

    By measuring the amount of radioactive decay of a radioactive isotope with a known half-life, geologists can establish the absolute age of the parent material. A number of radioactive isotopes are used for this purpose, and depending on the rate of decay, are used for dating different geological periods.

  5. Absolute dating - Wikipedia

    en.wikipedia.org/wiki/Absolute_dating

    Other radiometric dating techniques are available for earlier periods. One of the most widely used is potassium–argon dating (K–Ar dating). Potassium-40 is a radioactive isotope of potassium that decays into argon-40. The half-life of potassium-40 is 1.3 billion years, far longer than that of carbon-14, allowing much older samples to be dated.

  6. Lead–lead dating - Wikipedia

    en.wikipedia.org/wiki/Lead–lead_dating

    Lead–lead dating is a method for dating geological samples, normally based on 'whole-rock' samples of material such as granite.For most dating requirements it has been superseded by uranium–lead dating (U–Pb dating), but in certain specialized situations (such as dating meteorites and the age of the Earth) it is more important than U–Pb dating.

  7. Argon–argon dating - Wikipedia

    en.wikipedia.org/wiki/Argon–argon_dating

    Argon–argon (or 40 Ar/ 39 Ar) dating is a radiometric dating method invented to supersede potassium–argon (K/Ar) dating in accuracy. The older method required splitting samples into two for separate potassium and argon measurements, while the newer method requires only one rock fragment or mineral grain and uses a single measurement of argon isotopes.

  8. Geochronometry - Wikipedia

    en.wikipedia.org/wiki/Geochronometry

    Today, the determination of the age of the Earth is not a primary scope of geochronometry anymore, and most efforts are rather aimed at obtaining increasingly precise radiometric datings. At the same time, other methods for the measurement of time were developed, so the quantification of geologic time can now be endeavored with a variety of ...

  9. Rubidium–strontium dating - Wikipedia

    en.wikipedia.org/wiki/Rubidium–strontium_dating

    The rubidium–strontium dating method (Rb–Sr) is a radiometric dating technique, used by scientists to determine the age of rocks and minerals from their content of specific isotopes of rubidium (87 Rb) and strontium (87 Sr, 86 Sr). One of the two naturally occurring isotopes of rubidium, 87 Rb, decays to 87 Sr with a half-life of 49.23 ...