Search results
Results From The WOW.Com Content Network
AgCN precipitates upon the addition of sodium cyanide to a solution containing Ag +. On the addition of further cyanide, the precipitate dissolves to form linear [Ag(CN) 2] − (aq) and [Ag(CN) 3] 2− (aq). Silver cyanide is also soluble in solutions containing other ligands such as ammonia or tertiary phosphines.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
This inorganic compound –related article is a stub. You can help Wikipedia by expanding it.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Silver thiocyanate may be formed via an ion exchange reaction. In this double displacement reaction, silver nitrate and ammonium thiocyanate are dissolved in distilled water to produce silver thiocyanate and ammonium nitrate.
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.
The noble gases do not react with water, but their solubility in water increases when going down the group. Argon atoms in water appear to have a first hydration shell composed of 16±2 water molecules at a distance of 280–540 pm, and a weaker second hydration shell is found out to 800 pm. Similar hydration spheres have been found for krypton ...