Ads
related to: table of primitive polynomials practice quiz quizlet geometry pdf free download
Search results
Results From The WOW.Com Content Network
In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).
The primitive solutions are in one to one correspondence with the rational points of the quadric (up to a change of sign of all components of the solution). The non-primitive integer solutions are obtained by multiplying primitive solutions by arbitrary integers; so they do not deserve a specific study.
In field theory, the primitive element theorem states that every finite separable field extension is simple, i.e. generated by a single element. This theorem implies in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.
In different branches of mathematics, primitive polynomial may refer to: Primitive polynomial (field theory), a minimal polynomial of an extension of finite fields; Primitive polynomial (ring theory), a polynomial with coprime coefficients
Otherwise, θ is algebraic over K; that is, θ is a root of a polynomial over K. The monic polynomial of minimal degree n, with θ as a root, is called the minimal polynomial of θ. Its degree equals the degree of the field extension, that is, the dimension of L viewed as a K-vector space.
Zeros. Polynomials. Determinants. Number Theory. Geometry. The volumes are highly regarded for the quality of their problems and their method of organisation, not by topic but by method of solution, with a focus on cultivating the student's problem-solving skills. Each volume the contains problems at the beginning and (brief) solutions at the end.
To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid.
In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF( q ) is called a primitive element if it is a primitive ( q − 1) th root of unity in GF( q ) ; this means that each non-zero element of GF( q ) can be written as α i for some natural number i .