Search results
Results From The WOW.Com Content Network
Cutaneous receptors are at the ends of afferent neurons. works within the capsule. Ion channels are situated near these networks. In sensory transduction, the afferent nerves transmit through a series of synapses in the central nervous system, first in the spinal cord, the ventrobasal portion of the thalamus, and then on to the somatosensory cortex.
Type Aβ fibres, and type Aγ, are the type II afferent fibers from stretch receptors. [1] Type Aβ fibres from the skin are mostly dedicated to touch. However a small fraction of these fast fibres, termed "ultrafast nociceptors", also transmit pain. [6] Type Aδ fibers are the afferent fibers of nociceptors. Aδ fibers carry information from ...
Cutaneous receptors are a type of sensory receptor, which respond to stimuli (touch, pressure, pain, temperature) that provide information regarding contact with the external environment. A common reflex involving cutaneous receptors is the crossed extensor reflex. This reflex is recruited when we experience a painful stimulus on the bottom of ...
Aδ fibers are characterized by thin axons and thin myelin sheaths, and are either D-hair receptors or nociceptive neurons. Aδ fibers conduct at a rate of up to 25 m/s. D-hair receptors have large receptive fields and very low mechanical thresholds, and have been shown to be the most sensitive of known cutaneous mechanoreceptors.
Merkel cells are found in the skin and some parts of the mucosa of all vertebrates. In mammalian skin, they are clear cells found in the stratum basale [2] [3] (at the bottom of sweat duct ridges) of the epidermis approximately 10 μm in diameter. They are oval-shaped mechanoreceptors essential for light touch sensation and found in the skin of ...
[1] [2] This corpuscle is a type of nerve ending in the skin that is responsible for sensitivity to pressure. In particular, they have their highest sensitivity (lowest threshold) when sensing vibrations between 10 and 50 hertz. They are rapidly adaptive receptors. They are most concentrated in thick hairless skin, especially at the finger pads.
Mechanoreceptors are classified in terms of their adaptation rate and the size of their receptive field. Specific mechanoreceptors and their functions include: [25] Thermoreceptors that detect changes in skin temperature. Kinesthetic receptors detect movements of the body, and the position of the limbs.
Hair follicle receptors called hair root plexuses sense when a hair changes position. Indeed, the most sensitive mechanoreceptors in humans are the hair cells in the cochlea of the inner ear (no relation to the follicular receptors – they are named for the hair-like mechanosensory stereocilia they possess); these receptors transduce sound for ...