When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    However, the Hamiltonian still exists. In the case where the cometric is degenerate at every point q of the configuration space manifold Q, so that the rank of the cometric is less than the dimension of the manifold Q, one has a sub-Riemannian manifold. The Hamiltonian in this case is known as a sub-Riemannian Hamiltonian. Every such ...

  3. Floer homology - Wikipedia

    en.wikipedia.org/wiki/Floer_homology

    The symplectic Floer homology of a Hamiltonian symplectomorphism of a compact manifold is isomorphic to the singular homology of the underlying manifold. Thus, the sum of the Betti numbers of that manifold yields the lower bound predicted by one version of the Arnold conjecture for the number of fixed points for a nondegenerate symplectomorphism.

  4. Symplectic geometry - Wikipedia

    en.wikipedia.org/wiki/Symplectic_geometry

    Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. [ 1 ] The term "symplectic", introduced by Hermann Weyl , [ 2 ] is a calque of "complex"; previously, the "symplectic group" had been called the "line ...

  5. Momentum map - Wikipedia

    en.wikipedia.org/wiki/Momentum_map

    An -action on a symplectic manifold (,) is called Hamiltonian if it is symplectic and if there exists a momentum map. A momentum map is often also required to be G {\displaystyle G} -equivariant , where G {\displaystyle G} acts on g ∗ {\displaystyle {\mathfrak {g}}^{*}} via the coadjoint action , and sometimes this requirement is included in ...

  6. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  7. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    Thus, the time evolution of a function on a symplectic manifold can be given as a one-parameter family of symplectomorphisms (i.e., canonical transformations, area-preserving diffeomorphisms), with the time being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian.

  8. Hamiltonian vector field - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_vector_field

    In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton , a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics .

  9. Symplectomorphism - Wikipedia

    en.wikipedia.org/wiki/Symplectomorphism

    In contrast, isometries in Riemannian geometry must preserve the Riemann curvature tensor, which is thus a local invariant of the Riemannian manifold. Moreover, every function H on a symplectic manifold defines a Hamiltonian vector field X H, which exponentiates to a one-parameter group of Hamiltonian diffeomorphisms. It follows that the group ...