When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multigraph - Wikipedia

    en.wikipedia.org/wiki/Multigraph

    Multigraphs and multidigraphs also support the notion of graph labeling, in a similar way. However there is no unity in terminology in this case. The definitions of labeled multigraphs and labeled multidigraphs are similar, and we define only the latter ones here. Definition 1: A labeled multidigraph is a labeled graph with labeled arcs.

  3. Quiver (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Quiver_(mathematics)

    In mathematics, especially representation theory, a quiver is another name for a multidigraph; that is, a directed graph where loops and multiple arrows between two vertices are allowed. Quivers are commonly used in representation theory: a representation V of a quiver assigns a vector space V ( x ) to each vertex x of the quiver and a linear ...

  4. Graph labeling - Wikipedia

    en.wikipedia.org/wiki/Graph_labeling

    In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. [1] Formally, given a graph G = (V, E), a vertex labeling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph.

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  7. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. [2]

  8. Directed graph - Wikipedia

    en.wikipedia.org/wiki/Directed_graph

    A directed graph is weakly connected (or just connected [9]) if the undirected underlying graph obtained by replacing all directed edges of the graph with undirected edges is a connected graph. A directed graph is strongly connected or strong if it contains a directed path from x to y (and from y to x) for every pair of vertices (x, y).

  9. Talk:Multigraph - Wikipedia

    en.wikipedia.org/wiki/Talk:Multigraph

    "Multidigraph" should not be defined in terms of multisets, which do not support for example the notion of the multidigraph of all subsets of a set X and the functions between them. This notion arises for example in category theory as the underlying graph of the category of those subsets (underlying in the sense of forgetting the composition).