When.com Web Search

  1. Ads

    related to: dft matrix properties cleveland tn

Search results

  1. Results From The WOW.Com Content Network
  2. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    An N-point DFT is expressed as the multiplication =, where is the original input signal, is the N-by-N square DFT matrix, and is the DFT of the signal. The transformation matrix W {\displaystyle W} can be defined as W = ( ω j k N ) j , k = 0 , … , N − 1 {\displaystyle W=\left({\frac {\omega ^{jk}}{\sqrt {N}}}\right)_{j,k=0,\ldots ,N-1 ...

  3. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    A useful property of the DFT is that the inverse DFT can be easily expressed in terms of the (forward) DFT, via several well-known "tricks". (For example, in computations, it is often convenient to only implement a fast Fourier transform corresponding to one transform direction and then to get the other transform direction from the first.)

  4. Discrete Fourier transform over a ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform...

    In order to align with the complex case and ensure the matrix is order 4 exactly, we can normalize the above DFT matrix with . Note that though n {\displaystyle {\sqrt {n}}} may not exist in the splitting field F q {\displaystyle F_{q}} of x n − 1 {\displaystyle x^{n}-1} , we may form a quadratic extension F q 2 ≅ F q [ x ] / ( x 2 − n ...

  5. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    Hence the product of a circulant matrix with a Fourier mode yields a multiple of that Fourier mode, i.e. it is an eigenvector.) The corresponding eigenvalues are given by λ j = c 0 + c 1 ω j + c 2 ω 2 j + ⋯ + c n − 1 ω ( n − 1 ) j , j = 0 , 1 , … , n − 1. {\displaystyle \lambda _{j}=c_{0}+c_{1}\omega ^{j}+c_{2}\omega ^{2j}+\dots ...

  6. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    The discrete Fourier transform is defined by a specific Vandermonde matrix, the DFT matrix, where the are chosen to be n th roots of unity. The Fast Fourier transform computes the product of this matrix with a vector in O ( n log 2 ⁡ n ) {\displaystyle O(n\log ^{2}n)} time.

  7. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    The lower right corner depicts samples of the DTFT that are computed by a discrete Fourier transform (DFT). The utility of the DTFT is rooted in the Poisson summation formula, which tells us that the periodic function represented by the Fourier series is a periodic summation of the continuous Fourier transform: [b]

  8. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The multidimensional discrete Fourier transform (DFT) is a sampled version of the discrete-domain FT by evaluating it at sample frequencies that are uniformly spaced. [2] The N 1 × N 2 × ... N m DFT is given by:

  9. Fourier transform on finite groups - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform_on...

    There is a direct relationship between the Fourier transform on finite groups and the representation theory of finite groups.The set of complex-valued functions on a finite group, , together with the operations of pointwise addition and convolution, form a ring that is naturally identified with the group ring of over the complex numbers, [].