When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant R is defined as the Avogadro constant N A multiplied by the Boltzmann constant k (or k B): = = 6.022 140 76 × 10 23 mol −1 × 1.380 649 × 10 −23 J⋅K −1 = 8.314 462 618 153 24 J⋅K −1 ⋅mol −1. Since the 2019 revision of the SI, both N A and k are defined with exact numerical values when expressed in SI units. [2]

  3. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...

  4. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature. For example, in SI units R = 8.3145 J⋅K −1 ⋅mol −1 when pressure is expressed in pascals, volume in cubic meters, and absolute temperature in kelvin. The ideal gas law is an extension of experimentally discovered ...

  5. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    R is the gas constant (J⋅K −1 ⋅mol −1) N is the number of molecules in the body. (dimensionless) k B is the Boltzmann constant (J⋅K −1) Again, SI units shown for example. In the Ideal gas article, dimensionless heat capacity is expressed as ^.

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).

  8. International System of Units - Wikipedia

    en.wikipedia.org/wiki/International_System_of_Units

    For example, the coherent derived SI unit of velocity is the metre per second, with the symbol m/s. [1]: 139 The base and coherent derived units of the SI together form a coherent system of units (the set of coherent SI units). A useful property of a coherent system is that when the numerical values of physical quantities are expressed in terms ...

  9. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    R: Measure for the ease with which an object resists conduction of heat K/W L −2 M −1 T 3 Θ: extensive Thermal resistivity R λ: Measure for the ease with which a material resists conduction of heat K⋅m/W L −1 M −1 T 3 Θ: intensive Viscosity: η: The measure of the internal friction in a fluid Pa⋅s L −1 M T −1: intensive ...