When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The Y combinator is an implementation of a fixed-point combinator in lambda calculus. Fixed-point combinators may also be easily defined in other functional and imperative languages. The implementation in lambda calculus is more difficult due to limitations in lambda calculus. The fixed-point combinator may be used in a number of different areas:

  3. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.

  4. de Bruijn index - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_index

    The term λx. λy. x, sometimes called the K combinator, is written as λ λ 2 with de Bruijn indices. The binder for the occurrence x is the second λ in scope. The term λx. λy. λz. x z (y z) (the S combinator), with de Bruijn indices, is λ λ λ 3 1 (2 1). The term λz. (λy. y (λx. x)) (λx. z x) is λ (λ 1 (λ 1)) (λ 2 1). See the ...

  5. Church encoding - Wikipedia

    en.wikipedia.org/wiki/Church_encoding

    For example, a list of three elements x, y and z can be encoded by a higher-order function that when applied to a combinator c and a value n returns c x (c y (c z n)). Equivalently, it is an application of the chain of functional compositions of partial applications, (c x ∘ c y ∘ c z) n.

  6. Combinatory logic - Wikipedia

    en.wikipedia.org/wiki/Combinatory_logic

    Combinatory logic is a model of computation equivalent to lambda calculus, but without abstraction. The advantage of this is that evaluating expressions in lambda calculus is quite complicated because the semantics of substitution must be specified with great care to avoid variable capture problems.

  7. SKI combinator calculus - Wikipedia

    en.wikipedia.org/wiki/SKI_combinator_calculus

    A Calculus of Mobile Processes, Part I (PostScript) (by Milner, Parrow, and Walker) shows a scheme for combinator graph reduction for the SKI calculus in pages 25–28. the Nock programming language may be seen as an assembly language based on SK combinator calculus in the same way that traditional assembly language is based on Turing machines.

  8. B, C, K, W system - Wikipedia

    en.wikipedia.org/wiki/B,_C,_K,_W_system

    Also of note, Y combinator has a short expression in this system, as Y = BU(CBU) = BU(BWB) = B(W(WK))(BWB), where U = WI = SII is the self-application combinator. Using just two combinators, B and W , an infinite number of fixpoint combinators can be constructed, one example being B ( WW )( BW ( BBB )), discovered by R. Statman in 1986.

  9. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    A common theme in lambda calculus is to find fixed points of given lambda expressions. Every lambda expression has a fixed point, and a fixed-point combinator is a "function" which takes as input a lambda expression and produces as output a fixed point of that expression. [8]