When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    In vector calculus, the del operator is used to define the concepts of gradient, divergence, and curl in terms of partial derivatives. A matrix of partial derivatives, the Jacobian matrix, may be used to represent the derivative of a function between two spaces of arbitrary dimension. The derivative can thus be understood as a linear ...

  3. Partial derivative - Wikipedia

    en.wikipedia.org/wiki/Partial_derivative

    e. In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Partial derivatives are used in vector calculus and differential geometry.

  4. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    With the definitions of multiple integration and partial derivatives, key theorems can be formulated, including the fundamental theorem of calculus in several real variables (namely Stokes' theorem), integration by parts in several real variables, the symmetry of higher partial derivatives and Taylor's theorem for multivariable functions.

  5. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  6. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    t. e. In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation, or, equivalently, The chain rule may also be expressed in ...

  7. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    Symmetry of second derivatives. In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) is the fact that exchanging the order of partial derivatives of a multivariate function. … n {\displaystyle f\left (x_ {1},\,x_ {2},\,\ldots ,\,x_ {n}\right)} does not change the result if some continuity conditions ...

  8. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  9. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    Second partial derivative test. The Hessian approximates the function at a critical point with a second-degree polynomial. In mathematics, the second partial derivative test is a method in multivariable calculus used to determine if a critical point of a function is a local minimum, maximum or saddle point.