Search results
Results From The WOW.Com Content Network
A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known.
If a random variable admits a density function, then the characteristic function is its Fourier dual, in the sense that each of them is a Fourier transform of the other. If a random variable has a moment-generating function (), then the domain of the characteristic function can be extended to the complex plane, and
[1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations. Equivalently, Q ( x ) {\displaystyle Q(x)} is the probability that a standard normal random variable takes a value larger than x {\displaystyle x} .
This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
This integral is 1 if and only if = (the normalizing constant), and in this case the Gaussian is the probability density function of a normally distributed random variable with expected value μ = b and variance σ 2 = c 2: = (()).
To obtain the marginal distribution over a subset of multivariate normal random variables, one only needs to drop the irrelevant variables (the variables that one wants to marginalize out) from the mean vector and the covariance matrix. The proof for this follows from the definitions of multivariate normal distributions and linear algebra.
An example found by Marcus and Shepp [18]: 387 is a random lacunary Fourier series = = ( + ), where ,,,, … are independent random variables with standard normal distribution; frequencies < < < … are a fast growing sequence; and coefficients > satisfy <.