When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of works designed with the golden ratio - Wikipedia

    en.wikipedia.org/wiki/List_of_works_designed...

    Many works of art are claimed to have been designed using the golden ratio. However, many of these claims are disputed, or refuted by measurement. [1] The golden ratio, an irrational number, is approximately 1.618; it is often denoted by the Greek letter φ .

  3. Patterns in nature - Wikipedia

    en.wikipedia.org/wiki/Patterns_in_nature

    For example, when leaves alternate up a stem, one rotation of the spiral touches two leaves, so the pattern or ratio is 1/2. In hazel the ratio is 1/3; in apricot it is 2/5; in pear it is 3/8; in almond it is 5/13. [ 56 ]

  4. Mathematics and art - Wikipedia

    en.wikipedia.org/wiki/Mathematics_and_art

    Other scholars argue that until Pacioli's work in 1509, the golden ratio was unknown to artists and architects. [53] For example, the height and width of the front of Notre-Dame of Laon have the ratio 8/5 or 1.6, not 1.618. Such Fibonacci ratios quickly become hard to distinguish from the golden ratio. [54]

  5. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The psychologist Adolf Zeising noted that the golden ratio appeared in phyllotaxis and argued from these patterns in nature that the golden ratio was a universal law. [92] Zeising wrote in 1854 of a universal orthogenetic law of "striving for beauty and completeness in the realms of both nature and art".

  6. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers .

  7. Jay Hambidge - Wikipedia

    en.wikipedia.org/wiki/Jay_Hambidge

    He was a pupil at the Art Students' League in New York and of William Merritt Chase, and a thorough student of classical art. He conceived the idea that the study of arithmetic with the aid of geometrical designs was the foundation of the proportion and symmetry in Greek architecture, sculpture and ceramics. [ 1 ]

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Reptiles (M. C. Escher) - Wikipedia

    en.wikipedia.org/wiki/Reptiles_(M._C._Escher)

    Reptiles depicts a desk upon which is a two dimensional drawing of a tessellated pattern of reptiles and hexagons, Escher's 1939 Regular Division of the Plane. [2] [3] [1] The reptiles at one edge of the drawing emerge into three dimensional reality, come to life and appear to crawl over a series of symbolic objects (a book on nature, a geometer's triangle, a three dimensional dodecahedron, a ...