Search results
Results From The WOW.Com Content Network
Standard sea-level conditions (SSL), [1] also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations. The term "standard sea level " is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations.
The density of surface seawater ranges from about 1020 to 1029 kg/m 3, depending on the temperature and salinity. At a temperature of 25 °C, the salinity of 35 g/kg and 1 atm pressure, the density of seawater is 1023.6 kg/m 3. [7] [8] Deep in the ocean, under high pressure, seawater can reach a density of 1050 kg/m 3 or higher. The density of ...
Since the Sea Level Datum of 1929 was a hybrid model, it was not a pure model of mean sea level, the geoid, or any other equipotential surface. Therefore, it was renamed the National Geodetic Vertical Datum of 1929 (NGVD 29) May 10, 1973, by the National Geodetic Survey , a part of the National Oceanic and Atmospheric Administration .
A common and relatively straightforward mean sea-level standard is instead a long-term average of tide gauge readings at a particular reference location. [1] The term above sea level generally refers to the height above mean sea level (AMSL). The term APSL means above present sea level, comparing sea levels in the past with the level today.
At standard mean sea level it specifies a temperature of 15 °C (59 °F), pressure of 101,325 pascals (14.6959 psi) (1 atm), and a density of 1.2250 kilograms per cubic meter (0.07647 lb/cu ft). It also specifies a temperature lapse rate of −6.5 °C (−11.7 °F) per km (approximately −2 °C (−3.6 °F) per 1,000 ft).
Sigma-t is a quantity used in oceanography to measure the density of seawater at a given temperature. [1] σ T is defined as ρ(S,T)-1000 kg m −3, where ρ(S,T) is the density of a sample of seawater at temperature T and salinity S, measured in kg m −3, at standard atmospheric pressure.
where a 0 is 1,225 km/h (661.45 kn) (the standard speed of sound at 15 °C), M is the Mach number, P is static pressure, and P 0 is standard sea level pressure (1013.25 hPa). Combining the above with the expression for Mach number gives EAS as a function of impact pressure and static pressure (valid for subsonic flow):
The amount of mass that can be lifted by hydrogen in air per unit volume at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3. and the buoyant force for one m 3 of hydrogen in air at sea level is: 1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N