Search results
Results From The WOW.Com Content Network
Standard sea-level conditions (SSL), [1] also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations.The term "standard sea level" is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations.
where a 0 is 1,225 km/h (661.45 kn) (the standard speed of sound at 15 °C), M is the Mach number, P is static pressure, and P 0 is standard sea level pressure (1013.25 hPa). Combining the above with the expression for Mach number gives EAS as a function of impact pressure and static pressure (valid for subsonic flow):
With a temperature lapse rate of −6.5 °C (-11.7 °F) per km (roughly −2 °C (-3.6 °F) per 1,000 ft), the table interpolates to the standard mean sea level values of 15 °C (59 °F) temperature, 101,325 pascals (14.6959 psi) (1 atm) pressure, and a density of 1.2250 kilograms per cubic meter (0.07647 lb/cu ft).
At standard mean sea level it specifies a temperature of 15 °C (59 °F), pressure of 101,325 pascals (14.6959 psi) (1 atm), and a density of 1.2250 kilograms per cubic meter (0.07647 lb/cu ft). It also specifies a temperature lapse rate of −6.5 °C (−11.7 °F) per km (approximately −2 °C (−3.6 °F) per 1,000 ft).
At IUPAC standard temperature and pressure (0 °C and 100 kPa), dry air has a density of approximately 1.2754 kg/m 3. At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3.
The density of air at sea level is about 1.2 kg/m 3 (1.2 g/L, 0.0012 g/cm 3). Density is not measured directly but is calculated from measurements of temperature, pressure and humidity using the equation of state for air (a form of the ideal gas law). Atmospheric density decreases as the altitude increases.
The amount of mass that can be lifted by hydrogen in air per unit volume at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3. and the buoyant force for one m 3 of hydrogen in air at sea level is: 1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N
As noted earlier, , =,. The total drag coefficient can be estimated as: = [()], where is the propulsive efficiency, P is engine power in horsepower, sea-level air density in slugs/cubic foot, is the atmospheric density ratio for an altitude other than sea level, S is the aircraft's wing area in square feet, and V is the aircraft's speed in miles per hour.