Search results
Results From The WOW.Com Content Network
In this case a new Majorana mass term is added to the Yukawa sector: = (¯ + ¯) where C denotes a charge conjugated (i.e. anti-) particle, and the terms are consistently all left (or all right) chirality (note that a left-chirality projection of an antiparticle is a right-handed field; care must be taken here due to different notations ...
A Feynman diagram (box diagram) for photon–photon scattering: one photon scatters from the transient vacuum charge fluctuations of the other. Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed.
q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle labels separated by '/', one particle label is chosen.
Here, 1 / 2 σ μν and F μν stand for the Lorentz group generators in the Dirac space, and the electromagnetic tensor respectively, while A μ is the electromagnetic four-potential. An example for such a particle [9] is the spin 1 / 2 companion to spin 3 / 2 in the D (½,1) ⊕ D (1,½) representation space of the ...
The Standard Model of particle physics contains 12 flavors of elementary fermions, plus their corresponding antiparticles, as well as elementary bosons that mediate the forces and the Higgs boson, which was reported on July 4, 2012, as having been likely detected by the two main experiments at the Large Hadron Collider (ATLAS and CMS). [1]
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
the mass–energy equivalence formula which gives the energy in terms of the momentum and the rest mass of a particle. The equation for the mass shell is also often written in terms of the four-momentum ; in Einstein notation with metric signature (+,−,−,−) and units where the speed of light c = 1 {\displaystyle c=1} , as p μ p μ ≡ p ...
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).