When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  3. H-maxima transform - Wikipedia

    en.wikipedia.org/wiki/H-maxima_transform

    In mathematical morphology, the h-maxima transform is a morphological operation used to filter local maxima of an image based on local contrast information. First, all local maxima are defined as connected pixels in a given neighborhood with intensity level greater than pixels outside the neighborhood.

  4. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. [1]

  5. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    The SIFT features extracted from the input images are matched against each other to find k nearest-neighbors for each feature. These correspondences are then used to find m candidate matching images for each image. Homographies between pairs of images are then computed using RANSAC and a probabilistic model is used for verification.

  6. Edge detection - Wikipedia

    en.wikipedia.org/wiki/Edge_detection

    This method uses no brightness of the image but only the intensities of the color channels which is important for detecting an edge between two adjacent pixels of equal brightness but different colors. The method scans the image two times: first along the horizontal lines and second along the vertical columns.

  7. Simulated annealing - Wikipedia

    en.wikipedia.org/wiki/Simulated_annealing

    Example illustrating the effect of cooling schedule on the performance of simulated annealing. The problem is to rearrange the pixels of an image so as to minimize a certain potential energy function, which causes similar colors to attract at short range and repel at a slightly larger distance. The elementary moves swap two adjacent pixels.

  8. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]

  9. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    In mathematics, Fermat's theorem (also known as interior extremum theorem) is a method to find the local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point (the function's derivative is zero at that point).